SYLLABUS Fall semester 2021-2022 academic years on the educational program "6B07202-Food chemistry and technology (NKU)": "Methods of control and analysis of compounds" | Discipline's code | Discipline's title | Indepen | Numbe | Independen | | | | | |--|--|---|--------------------------------------|----------------------------|---------------------------|-----------------------|---|--| | | | dent
work of
students
(IWS) | Lectu
res
(L) | Practical training
(PT) | Labora r of credits (Lab) | | t work of
student
with
teacher
(IWST) | | | MKAV 1207 | Methods of control and analysis of compounds | 68 | 15 | - | 60 | 5 | 7 | | | | | Academic | course i | nformation | | | | | | Form of education | Type of course | Types of lectures Types of practical training | | | Number
of IWS | Form of final control | | | | Combined (synchronously/ asynchronously/offline) | Mixed
(theoretical /
applied) | Vide | rmative,
o-lecture
-discussion | | 1 | 68 | Written
exam in
Moodle | | | Lecturer | Baimatova Nassiba Khikmatullaevna, PhD | | | | | | | | | e-mail | Baimatova.nassiba@gmail.com | | | | | | | | | Telephone number | +7 727 2921374, + | 7 702 220208 | 37 | · | | | | | # Academic presentation of the course | Aim of course | Expected Learning Outcomes (LO) As a result of studying the discipline the undergraduate will be able to: | Indicators of LO achievement (ID) (for each LO at least 2 indicators) | |---|--|--| | Aim of the course:
to form the ability
of designing and
operating modern
methods of control | 1. 1. Explain the nature and essence of the phenomena and processes underlying chemical methods of identification and determination (quantification) of substances | 1.1 to classify methods of chemical analysis 1.2 to describe the main stages of analysis 1.3 to form reaction equations that are the basis of chemical analysis methods | | and analysis of chemical compounds 1 | 2. demonstrate an understanding of the theoretical foundations of chemical analysis methods and their capabilities in relation to the analysis of real objects | 2.1 to determine the equivalent and equivalence factor 2.2 to reasonably choose indicators when titrating 2.3 to analyze titration curves | | | 3. calculate the parameters of simple and complex equilibria in solutions to select optimal analysis conditions; calculate the results of chemical analysis | 3.1 to work with reference literature 3.2 to carry out calculations when preparing the solutions 3.3 to calculate parameters of homogeneous and heterogeneous equilibria 3.4 to perform calculations when performing gravimetric and titrimetric analysis | | | 4. to understand the basic techniques of working in a chemical analytical laboratory | 4.1 to use measuring dishware, basic equipment of the chemical laboratory 4.2 be able to weigh on analytical scales 4.3 to prepare solutions of technical and analytical concentration 4.4 to perform a titration 4.5 to perform gravimetric analysis operations: sedimentation, filtration, washing of sediment 4.6 to determine pH of the solution using a pH meter 4.7 to competently maintain a laboratory journal | | | 5. to be aware of the role of analytical chemistry in solving practical problems (control of technological processes and the quality of finished products, monitoring the state of the environment, etc.) | 5.1 to solve situational tasks on the choice of analysis methods for solving specific problems 5.2 to make a description (prescription) of the experiment method 5.3 to properly formulate the formulation of the analytical problem | |-----------------------|--|--| | Prerequisites | Inorganic Chemistry | | | Post requisites | Physical chemistry; chemical technology; Metrology, standard analytical chemistry, educational and research work of study | | | Information resources | Harris D.C. Quantitative Chemical Analysis, 9th edit Skoog D.A., West D.M., Holler F.J., Crouch S.R. Fun Cengage Learning, 2013. Pawliszyn J. Comprehensive Sampling and Sam Scientists. – Academic Press, 2012. McNair H.M. Basic Gas Chromatography, 2nd editions. Greaves J., Roboz J. Mass Spectrometry for the Nove of Snyder L.R., Kirkland J.J., Dolan J.W. Introduct Interscience, 2010. Mitra S. Sample Preparation Techniques in Analytical Sons, 2003. R.S. Khandpur, Handbook of Analytical Instruments of Ecology of Biosphere laboratory. Interactive lectures.html https://teach-in.ru/course/analitchem The course of analytical chemistry – http://chimactiv | damentals of Analytical Chemistry, 9th edition. uple Preparation: Analytical Techniques for on. – Wiley-Interscience, 2009. ice. – CRC Press, 2013. ion into modern LC New Jersey: Wiley cal Chemistry. – New Jersey: John Wiley and , Tata McGraw-Hill Education, India, 2016 ectures. http://cfhma.kz/ecobio/en/interactive- | | | TT. THE CO | arse or anarytical | enemistry <u>mu</u> | premmactiv.agropt | aristeen.ii/en/oases | | | | | |-----------------------|-----------------------|--|---------------------|-----------------------------------|-------------------------------|----------------|--|--|--| | | | | | | | | | | | | Academic policy of | Academic B | ehavior Rules: | | | | | | | | | the course in the | | All students have to register at the MOOC. The deadlines for completing the modules of the online course | | | | | | | | | context of | | • | | the discipline study | | | | | | | university moral | | | | | f points! The deadline of | | | | | | and ethical values | indicated in | the calendar (sch | edule) of imples | mentation of the cor | tent of the curriculum, as v | well as in the | | | | | | MOOC. | | | | | | | | | | | Academic va | alues: | | | | | | | | | | - Practical tra | ainings/laborator | ies, IWS should | be independent, cre | ative. | | | | | | | - Plagiarism, | forgery, cheating | g at all stages of | control are unaccep | table. | | | | | | | - Students wi | ith disabilities ca | n receive counse | eling at e-mail <mark>Baim</mark> | atova.nassiba@gmail.com. | | | | | | Evaluation and | Criterion as | sessment: the lev | el of students' c | competence will be d | etermined as the result of co | ontrol works, | | | | | attestation policy | midterm and | final examinatio | ns. | | | | | | | | | Summative | assessment: dur | ing laboratory p | ractice, the level of | student's knowledge and u | nderstanding | | | | | | of topics as v | vell as practical s | kills will be det | ermined. | | | | | | | | Formula for | calculating the fi | nal grade; | | | | | | | | | Laboratory p | ractice – 24%; | | | | | | | | | | Ratir | ng scale: | | | | _ | | | | | | Rating Digital Rating | | | | | | | | | | | | according to the | equivalent | Points (%) | according to the traditional | | | | | | | | letter system | equivalent | | system | | | | | | | A 4,0 95-100 | | | | | | | | | | ng scale: | | | | |---------------------------------------|-----------------------|------------|--| | Rating according to the letter system | Digital
equivalent | Points (%) | Rating according to the traditional system | | A | 4,0 | 95-100 | - Excellent | | A- | 3,67 | 90-94 | Excellent | | B+ | 3,33 | 85-89 | | | В | 3,0 | 80-84 | Good | | B- | 2,67 | 75-79 | Good | | C+ | 2,33 | 70-74 | | | C | 2,0 | 65-69 | | | C- | 1,67 | 60-64 | - Satisfactory | | D+ | 1,33 | 55-59 | Saustactory | | D- | 1,0 | 50-54 | | | FX | 0,5 | 25-49 | Lingatisfactorily | | F | 0 | 0-24 | Unsatisfactorily | ## CALENDAR (SCHEDULE) THE IMPLEMENTATION OF THE COURSE CONTENT: | | CALENDAR (SCHEDULE) THE IMP | LEMENT | ATION OF | THE C | OURSE | CONTENT: | | |-----------|--|--------|--------------------|-------------------|----------------------|----------------------------------|--| | wee
ks | Topic name | LO | AI | Am ount of hou rs | Maxi
mum
score | The form of knowledge assessment | The form of
the lesson/
platform | | | | T | T | | | T | Γ | | 1 | L.1 Role of analytical chemistry in the modern world. Classic methods of analytical chemistry and their analytical signals | LO 1 | AI 1.1 | 1 | | Oral discussion | Webinar in MS Teams https://teams. microsoft.com /l/meetup- join/19%3ame eting_ZjRjN2 E4ZTctOWU1 NC00OTZmL WJIOWUtMm JmZTRkYTA 0Yjky%40thre ad.v2/0?conte xt=%7b%22Ti d%22%3a%22 b0ab71a5- 75b1-4d65- 81f7- f479b4978d7b %22%2c%22 Oid%22%3a% 223226b52d- 462d-4de0- b606- f7eddb8dddf2 %22%7d | | 1 | PT 1 Determination of sodium chloride concentration in water solutions by density. Learning basic analytical laboratory glassware and equipment | LO 1 | AI 1.1. | 4 | 8 | Lab report | Offline
Lab 107 | | 2 | L.2 Forms of analyte in liquid, gaseous and solid samples and equilibrium between them | LO 1 | AI 1.2. | 1 | | Oral discussion | Webinar
in MS Teams | | 2 | PT 2 Analysis of gasoline using gas
chromatography – mass spectrometry (GC-MS) | LO 1 | AI 1.2. | 4 | 8 | Lab report | Offline | | 3 | L.3 Calculation of equilibrium concentrations | LO 1 | AI 1.3. | 1 | | Oral discussion | Webinar in MS Teams | | 3 | PT 3 Understanding homogeneous and heterogeneous equilibria | LO 1 | AI 1.3. | 4 | 8 | Lab report | Offline | | 3 | IWSP 1 Consultation on the implementation of IWS1 | LO 1 | AI 1.3. | | 5 | | Webinar in MS Teams | | 3 | IWS 1. Solving computational tasks on equilibrium concentrations | LO 1 | AI 1.1.
AI 1.2. | | 25 | Logic task | | | 4 | L.4 Techniques for preparation of liquid samples with a desired concentration of analyte | LO 3 | AI 3.1. | 1 | | Oral discussion | Webinar
in MS Teams | | 4 | PT 4 Preparation of liquid samples with a desired concentration of analyte | LO 3 | AI 3.1. | 4 | 8 | Lab report | Offline | | 5 | L.5 Uncertainties in preparing solutions | LO 4 | AI 4.1. | | | Oral discussion | Webinar
in MS Teams | | 5 | PT 5 Preparation of liquid samples with a desired concentration of analyte and its uncertainty | LO 4 | AI 4.1. | | 8 | Lab report | Offline | | 5 | IWSP 2 Consultation on the implementation of IWS2 | LO 4 | AI 4.1. | | 5 | | Webinar
in MS Teams | | 5 | IWS 2 Solving computational tasks on calculation uncertainties of prepared liquid samples | LO 4 | AI 4.1. | | 20 | Logic task | | | 5 | Make a structural and logical diagram of the read material | LO 4 | AI 4.1. | | 10 | | | |----|--|------|---------|---|-----|--------------------|------------------------| | 5 | MT 1 | LO 4 | AI 4.1. | | 100 | | | | 6 | L.6 Techniques for preparation of gaseous samples with a desired concentration of analyte | LO 1 | AI 1.3. | 2 | | Oral discussion | Webinar in MS Teams | | 6 | PT 6 Preparation of gaseous samples with a desired concentration of analyte and its uncertainty | LO 1 | AI 1.2. | 1 | 8 | Lab report | Offline | | 7 | L.7 Techniques for preparation of solid samples with a desired concentration of analyte | LO 1 | AI 1.1. | | | Oral
discussion | Webinar
in MS Teams | | 7 | PT 7 Preparation of solid samples with a desired concentration of analyte and its uncertainty | LO 1 | AI 1.1. | 1 | 8 | Lab report | Offline | | 8 | L.8 Gravimetric methods of analysis | LO 1 | AI 1.1. | 2 | | Oral discussion | Webinar
in MS Teams | | 8 | PT 8 Gravimetric determination of iron. Part 1: precipitation and filtration | LO 1 | AI 1.1. | | 8 | Lab report | Offline | | 8 | IWSP 3 Consultation on the implementation of IWS3 | LO 1 | AI 1.1. | | 5 | | Webinar in MS Teams | | 8 | IWS 3 Solving computational tasks on gravimetric determination of analyte in sample. | LO 1 | AI 1.1. | | 20 | Logic task | | | 9 | L.9 Problems and optimization of gravimetric analysis | LO 1 | AI 1.1. | | | Oral discussion | Webinar in MS Teams | | 9 | PT 9 Gravimetric determination of iron. Part 2: drying, measurement of mass, calculations and reporting | LO 1 | AI 1.1. | 2 | 8 | Lab report | Offline | | 10 | L.10 Titrimetric analysis. Acid-base titration | LO 1 | AI 1.1. | 2 | | Oral discussion | Webinar in MS Teams | | 10 | PT 10 Determination of water hardness | LO 1 | AI 1.1. | | 8 | Lab report | Offline | | 10 | IWSP 4 Consultation on the implementation of IWS4 | LO 1 | AI 1.1. | | 5 | | Webinar in MS Teams | | 10 | IWS 4 Solving of tasks on titrimetric determination of analyte in sample | LO 1 | AI 1.1. | | 20 | Problem task | | | 10 | IWSP 5 Make a structural and logical diagram of the read material | LO 1 | AI 1.1. | | 10 | | | | 10 | MT (Midterm Exam) | LO 1 | AI 1.1. | | 100 | | | | 11 | L.11 Titrimetry based on reactions of complexation and precipitation | LO 1 | AI 1.1. | | | Oral discussion | Webinar in MS Teams | | 11 | PT 11 Complexometric determination of calcium and magnesium ions | LO 1 | AI 1.1. | 1 | 8 | Lab report | Offline | | 12 | L.12 Redox titrations | LO 1 | AI 1.1. | 1 | | Oral discussion | Webinar in MS Teams | | 12 | PT 12 Bichromatometric determination of iron | LO 1 | AI 1.1. | 1 | 8 | Lab report | Offline | | 12 | IWSP 6 Consultation on the implementation of IWS5 | LO 1 | AI 1.1. | | 5 | | Webinar in MS Teams | | 12 | IWS 5 Solving of tasks based on redox titrations | LO 1 | AI 1.1. | | 20 | Problem task | | | 13 | L.13 General principles of a qualitative chemical analysis. Identification of inorganic cations | LO 1 | AI 1.1. | 1 | | Oral
discussion | Webinar
in MS Teams | | 13 | PT 13 Identification of inorganic anions | LO 1 | AI 5.1. | 1 | 8 | Lab report | Offline | | 14 | L.14 Identification of inorganic anions | LO 1 | AI 5.2. | 1 | | Oral
discussion | Webinar
in MS Teams | | 14 | PT 14 Classic and advanced methods of analytical chemistry | LO 1 | AI 5.3. | 1 | 8 | Lab report | Offline | | 14 | IWS 6 Solution of tasks on separation and detection of inorganic cations and anions | | | | | | | | 15 | L.15 Identification of organic compounds | LO 1 | AI 5.3. | 1 | | Oral discussion | Webinar
in MS Teams | | 15 | PT 15 Qualitative analysis of a sample having | LO 1 | AI 5.3. | 1 | 8 | Lab report | Offline | |----|---|------|---------|---|-----|------------|-------------| | | unknown composition | | | | | | | | 15 | IWSP 7 Consultation on the implementation of | LO 5 | AI 5.3. | | 5 | | Webinar | | | IWS7 | | | | | | in MS Teams | | 15 | IWS 7 Solution of tasks on identification of | LO 5 | AI 5.2. | | 20 | Analysis | | | | inorganic and organic compounds in unknown | | AI 5.3. | | | | | | | samples | | | | | | | | | MT 2 | LO 5 | AI 5.2. | | 100 | | | | | | | AI 5.3. | | | | | [Abbreviations: QS - questions for self-examination; TK - typical tasks; IT - individual tasks; CW - control work; MT - midterm. #### Comments: Lecturer - Form of L and PT: webinar in MS Teams / Zoom (presentation of video materials for 10-15 minutes, then its discussion / consolidation in the form of a discussion / problem solving / ...) - Form of carrying out the CW: webinar (at the end of the course, the students pass screenshots of the work to the monitor, he/she sends them to the teacher) / test in the Moodle DLS. - All course materials (L, QS, TK, IT, etc.) see here (see Literature and Resources, p. 6). - Tasks for the next week open after each deadline. - CW assignments are given by the teacher at the beginning of the webinar.] Dean Kh.S. Tassibekov Chairman of the Faculty Methodical Bureau R.A. Mangazbayeva Head of the Department A.K. Galeyeva N.Kh. Baimatova